Executive Summary

This report is a description, analysis, and comparison of the existing and four alternative floor systems. The proposed floor system for Parkridge Center – Phase VI is a composite steel system. Using manufacturer design tables, the CRSI handbook, the AISC Manual of Steel Construction 13th Edition, RAM Structural system, and other design aids I have analyzed and found preliminary sizes for the following floor systems:

- Post-Tension 2-Way Flat Plate Slab
- Pre-Cast Hollow Core Plank
- Open Web Steel Joists with form deck
- Non-Composite Steel with form deck

Each system was compared against overall depth, weight, constructability, and impact on the existing foundation. From the initial analysis I found that the existing system is the most economical for the typical bay spans. Other viable options that would require more study are a Post-Tension and open web steel joist system. The post-tension systems may provide additional benefits in resisting the floor tension caused by the sloping columns on the south face. The open web steel joist system has the potential to significantly reduce the seismic base shear and impact on the shallow foundation system.

Table of Contents

	T
EXISTING SYSTEM	2
ALTERNATIVE SYSTEM 1: POST TENSION 2 –WAY FLAT PLATE SLAB	4
ALTERNATIVE SYSTEM 2: PRE-CAST HOLLOW CORE PLANK	6
ALTERNATIVE SYSTEM 3: OPEN WEB STEEL JOISTS WITH FORM DECK	8
ALTERNATIVE SYSTEM 4: NON-COMPOSITE STEEL WITH FORM DECK	0
CONCLUSIONS	2
APPENDIX	3

Introduction

The proposed Parkridge Center – Phase VI building is a 226,000 Sq. Ft., seven story commercial office building located in Reston, VA. The framing system is a composite steel system with a total slab depth of 5 $\frac{1}{4}$ ". The foundation is a shallow spread footing system with an allowable bearing pressure of 3000 PSF. The typical exterior bay is 37'-2" x 25'-0" and the typical interior bay is 35'-0" x 25'-0". The overall depth of the floor system is limited to 4'-6" based on architectural sections showing location of ceiling tiles relative to the top of slab of the floor above. The required fire rating of the structural system is 2 hrs.

Gravity Loads

Live Loads – IBC Table 1607.1							
Roof Garden	100 PSF						
Offices	70 PSF						
Corridors	80 PSF						
Stair and Exits	100 PSF						
Lobbies and First Floor Corridors	100 PSF						

The value of live load for offices includes a 20 PSF addition for partitions. To be consistent with the original design a value of 100 PSF will be used as the live load on a typical floor.

Ass	Assumed - Typical Floor Dead Loads											
Composite Floor System	41 PSF	Estimated Using United Steel Deck Catalog										
Misc. (MEP, finishes, etc.)	10 PSF	Estimated Using AISC Manual of Steel Constr.										
Ponding of Concrete	10 PSF											

Existing System

The existing floor system for Parkridge Center – Phase VI is a composite steel system. The system consists of beams spanning in the long direction and girders spanning in the short direction. The composite deck used is a 2" - 20 gage composite deck with 3 $\frac{1}{4}"$ light weight concrete having a total slab depth of 5 $\frac{1}{4}"$. The beams are cambered at 1 $\frac{1}{4}"$ to counteract deflection.

Fig. 2.1 – Existing Framing - Plan

Fig. 2.2 – Existing Framing - Section

Figure 2.1 illustrates the layout of a typical exterior bay of the Parkridge office building. I have chosen to calculate my additional floor system designs using this typical bay. The W18x40 exterior girder has 30 shear studs due to the additional loading from the pre-cast curtain wall at that level.

The use of a composite system allows for the longer spans used keeping column interference with tenant space at a minimum. The system also provides ample space for MEP systems to be distributed in the allotted ceiling space. There is a potential for slight increase in price using a composite system depending on the amount of shear studs needed.

Alternative Framing Systems

The proposed alternative floor systems that will be investigated in this report are:

- Post Tension 2-Way Flat Plate Slab
- Pre-Cast Hollow Core Plank on Steel Beams
- Open Web Steel Joist with form deck
- Non-Composite Steel with form deck

These alternative systems will be checked using the typical bay illustrated in Figure 2.1.

Alternative System 1: Post Tension 2 – Way Flat Plate Slab

The first system that was chosen was a Post Tension 2-Way Flat Plate Slab. For this system I first found a preliminary column size using the axial load from technical assignment 1. For the determination of punching shear in the slab this will be conservative as the column size should increase with the change to an entirely concrete system. Using the determined column size and table 9.5(a) in ACI-318 a minimum slab thickness was determined. The determined slab thickness was 11". To use this system the typical bay had to be reduced to 27'-0" x 23'-0". The direct design method requirements are met by the typical bay and the rest of the building. The direct design method was used to determine design moments.

POST TENSION 2-WAY FLAT PLATE SLAB

Fig. 2.3 – Alternative System 1 – Post Tension Plan

Δ-Δ

Fig. 2.4 – Alternative System 1 – Post Tension Section

I chose to band the tendons in the short direction as it has a higher tendency to accumulate load due to increased stiffness when compared to the long direction. The required jacking force for the banded tendons is 486 Kips. A required jacking force of 17.9 Kips/ft is required for the uniformly distributed tendons in the long direction.

Although the use of a post tension system requires smaller bay dimensions it significantly decrease the overall system depth. The costs associated with a post tension slab would be higher due to the increased difficulty in construction. The post tension system also meets the required fire rating of the structure without any additional fire proofing. The increased loading of the system would have a negative impact on the shallow spread footings used in the foundation. The weight would also produce larger seismic base shears negatively impacting the lateral system.

Alternative System 2: Pre-Cast Hollow Core Plank

The second system that was chosen was a pre-cast hollow core plank on steel beam system. The hollow core plank was selected based on fire rating and the Nitterhouse Concrete Products design tables. To provide a level floor service for the Parkridge office building the plank was sized with a 2" C.I.P. topping. This system also required the typical bay size to be adjusted to $36'-0" \times 20'-0"$. This bay size was selected to minimize the number of custom planks needed. An $8" \times 4'$ hollow core plank was selected. The controlling factor in the design of the steel support girders was deflection. A member with a moment of inertia equal to 4097.68 in^4 was required. Based on the Ix table 3-3 in the AISC Manual of Steel Construction 13^{th} Edition the most economic member was a w30x108. The total floor system depth including allowance for MEP was 4'-2" which is with the allowable 4'-6".

PRECAST HOLLOW CORE PLANK

Fig. 2.6 – Alternative System 2 – Pre-cast Hollow Core Plank – Section (Detail Taken from Nitterhouse Concrete Product website)

The hollow core plank system is among the simplest and most rapid to construct. The system cost is also a minimum, but the negatives of this system for Parkridge may eliminate it from being looked into further. The hollow core plank system was the only system that challenged the depth limitation. The additional weight of the system has a negative impact on the shallow foundation system and causes an increase in the seismic base shear.

Alternative System 3: Open Web Steel Joists with Form Deck

An open web steel joist system was selected for the 3^{rd} alternative system and was analyzed using RAM structural system. The joists were limited to an L/240 and L/360 total and live load deflection respectively. I also chose to span the joist in the long direction and have the joists spaced at 5' O.C. I chose a 5' spacing as it fits the typical bay dimension. A 20 gage UF2X deck was selected using the United Steel Desk Catalog. To achieve the required fire rating a 2 $\frac{1}{2}$ " concrete slab was used.

OPEN WEB STEEL JOIST

Fig. 2.7 – Alternative System 3 – Open Web Steel Joist – Plan

Fig. 2.8 – Alternative System 3 – Open Web Steel Joist – Section

The open web steel joist system is the lightest overall system out of the 5 studied. Using the open web steel joist system would decrease the seismic base shear positively impacting the lateral system. Also the decrease in weight would put less stress on the shallow foundation system. A drawback to this system however is the increased number of members per bay. A concern I have with this system is there is potential for high cost due to the need for custom members in non typical bays.

Alternative System 4: Non-Composite Steel with form deck

A non-composite steel system was selected as the final alternative system for this report. This system was analyzed using RAM structural system. Both the beams and girders were limited to an L/240 and L/360 total and live load deflection respectively. A 20 gage deck was also selected using the United Steel Deck catalog. To achieve the required fire rating a 2 $\frac{1}{2}$ " concrete slab was used. I chose to space the intermediate beams at the same spacing used in the existing system.

NON-COMPOSITE STEEL

Fig. 2.9 – Alternative System 4 – Non-Composite Steel – Plan

Fig. 2.10 – Alternative System 4 – Non-Composite Steel – Section

The non-composite system has the advantage of a thinner slab while keeping the original bay dimensions. Also the beams and girders are not cambered eliminating any problems that would arise with over cambering of the members. The overall depth of the system is comparable to the open web steel joist system. The increased member sizes would produce an equal cost as that of the original system. The impact from a non-composite steel system on the foundation is minimal compared to the original composite system.

Conclusions

Of the four systems analyzed in this report I feel that only the open web steel joists and 2-way Post tension slab warrant further study. A more in-depth analysis of the post tension system may yield results that minimize the resizing of typical bays. There is also a possible advantage of using the post tension with the sloping columns on the south face. The open web steel joists would allow me to keep the current bay dimensions while cutting down on the overall seismic base shear.

The following system comparison chart illustrates the differences in each system.

Floor System	Overall Span Seismic Depth		Seismic	Foundation	Cost	Construction
Pre-Cast Hollow Core Planks	largest	1 way decrease	increase	increase	lower	fast
2-way Post Tension Slab	smaller	2 way decrease	increase	increase	higher	staged
Non-Composite Steel	minimal change	no change	minimal increase	minimal change	minimal decrease	fast
Open Web Steel Joists	minimal change	no change	decrease	decrease	minimal decrease	fast
Composite Steel	-	-	-	-	-	-

Chart 2.1 – System Comparison Chart

Appendix

Design Spreadsheet 2.1 – Direct Deign Method for 2-Way Post Tension Slab

	Min. Column Size Estimation											
f' _c	4000	PSI										
P _u	1611.13	Kips	Axial Load on columns from Technical Assignment 1									
A _{req.}	402.78	in ²										
В	21	in										
Н	21	in	Assumed Square Columns									

Minimum Slab 1	hickness Ch	neck	
Fy	60000	PSI	
Long Span	27.00	Ft.	
Short Span	23.00	Ft.	
ℓ _n /30	11	in	
Slab Depth	11	in	
Slab DL	137.5	PSF	
Misc. DL	20	PSF	
LL	100	PSF	
Total Factored Load	349	PSF	
W _{net}	225.25	PSF	
Cover	0.75	in	
d	9.75	in	
Vu	5.50	Kips	
Vc	14.80	Kips	
Φ	0.75		
ΦVc	11.10	Kips	Ok
V _{u,two way action}	139.19	Kips	
Vc	207.19	Kips	
ΦVc	155.39	Kips	Ok

Check Requirements for Direct Design Method									
3 Continuous Spans EW	Y		ОК						
Span Ratio	1.17	< 2	ОК						
Span Length difference	ОК		ОК						
Offset of Columns	No Offset		ОК						
Gravity Loads Only	Y		ОК						

Two	o-Way Fla	at Plate	Syste	e <mark>m (Per 12</mark> "	Width)					
Lon	g Span		Sho	Short Span						
L	oads			L						
Post Tension	123.75	PSF		Post Tension	123.75	PSF				
W _{net}	225.25	PSF		W _{net}	225.25	PSF				
S	pans			S	pans					
L1	27.00	Ft		L1	23.00	Ft				
L2	23.00	Ft		L2	27.00	Ft				
Factored S	Static Mo	ment		Factored S	Static Mo	ment				
Мо	20.53	Ft- Kips		Мо	14.89	Ft- Kips				
Longitudin	al Distrib	oution		Longitudin	al Distrib	ution				
M+	7.18	Ft- Kips		M+	5.21	Ft- Kips				
M-	13.34	Ft- Kips		M-	9.68	Ft- Kips				
Transvers	e Distrib	ution		Transvers	e Distrib	ution				
Colu	mn Strip	ľ		Colu	mn Strip	l				
M+	5.39	Ft- Kips		M+	3.91	Ft- Kips				
M-	10.01	Ft- Kips		M-	7.26	Ft- Kips				
Mide	dle Strip			Mido	dle Strip					
M+	1.80	Ft- Kips		M+	1.30	Ft- Kips				
M-	3.34	Ft- Kips		M-	2.42	Ft- Kips				
Lon	g Span			Sho	rt Span					
W _{pre}	123.75	PSF		W _{pre}	123.75	PSF				
M _{pre}	8.18	Ft- Kips		M _{pre}	11.28	Ft- Kips				
а	5.5	in		а	5.5	in				
F	17.85	Kips		F	24.60	Kips				
F/A	135.26	PSI		F/A	186.39	PSI				
	Averaç	ge Stres	sses -	Column Stri	р					
Negative	e Long Sp	ban		Negative	Short S	ban				
S	242	in ³		S	242	in ³				· · · · · · · · · · · · · · · · · · ·
f	360.93	PSI	ОК	f	173.66	PSI	ОК	379.47	PSI	6√F'c
	- 631.44	PSI	ок		- 546.45	PSI	ОК	1800	PSI	0.45*F'c
Positive	Long Sp	an		Positive	Short Sp	an				
S	242	in ³		S	242	in ³			1	· · · · · · · · · · · · · · · · · · ·
f	131.92	PSI	ОК	f	7.48	PSI	ОК	189.74	PSI	3√F'c
	- 402.43	PSI	ок		- 380.27	PSI	ОК	1800	PSI	0.45*F'c

Design Table 2.1 – Nitterhouse Concrete Products Hollow Core Plank

Prestressed 8"x4' SpanDe (2" C.I.P.	d Concrete eck-U.LJ952 TOPPING)
PHYSICAL PF Comp	ROPERTIES
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

 Load values to the left of the solid line are controlled by ultimate strength. Load values to the right are controlled by service stress.

15. All loads shown refer to allowable loads applied after the topping has hardened.

		8	SP	AND	CK V	//2'1	OPPI	NG						ALL	OWA	BLE S	UPE	RIMP	SED	LOAD) (PS	F)					
STDAN	ID D4	TTE				SPAN (FEET)																					
STRAN	ID PA	I IE	RN		10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Flexure	4	-	1/	/2"¢	750	675	611	546	462	394	338	291	252	218	191	167	146	128	112	98	85	74	63	51	41	31	\bigtriangledown
Shear	4	-	1/	/2"ø	527	469	421	382	348	317	294	272	252	235	219	197	176	157	140	129	122	110	98	88	78	70	\square
Flexure	6	-	1/	/2"ø	109	900	898	794	676	580	502	437	382	336	296	262	233	207	185	165	147	132	116	101	87	74	63
Shear	6	-	1/	/2"ø	542	48.	3 4 3 4	393	359	329	303	280	261	243	227	212	199	188	178	167	152	137	124	112	101	91	86

This table is for simple spans and uniform loads, design data for any of these span-load conditions is available on request. Individual designs may be furnished to satisfy unusual conditions of heavy loads, concentrated loads, cantilevers, flange or stem openings and narrow widths.

2655 MOLLY PITCHER HWY. SOUTH, BOX N CHAMBERSBURG, PA 17201-0813 717-267-4505 • FAX: 717-267-4518

REVISED 12/93

Handcalc 2.1 – System 2 Hollow Core Plank – Girder

Re REV. 396 ENGINEERING COMPUTATION SHEET
DLE OF PROJ. OR STUDY PROJ. OR STUDY Not
Computer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
HOLLOW CORE PRE-CAST PLANK
NELD 2 HR FIRE RATING
8" x 4 SPANDECK
PRECAST DL = 82.5 75F
,
SUPERIMPOSED LOADS: 100 PSF LL
20 PSF SDL
120 PSF SL (WEACTORED)
(1.4(20)+1.6(100) = 139 75F
SPAN RO'
move could stal to si
322m: 184 PSF + 1.2 (32.5 P3F) = 283 PSF (20) = 5.66 KCF
A A
4
M max = 5.66 (54)2
9 = 916.92 K
2^{-2} $(16)^{-2}$ $(16)^{-2}$ $(10)^{-2}$ $(10)^{-2}$ $(10)^{-2}$
$A \neq A = A = A = A = A = A = A = A = A = $
<u>5 (5.61)(36)</u> (1728) <u>36 (R)</u>
$3x4(29ab) I = \frac{2}{2}24b$
7375.83
$L \ge 4097.68 \text{ is } 4 \text{ if } 108 \text{ L}^{\circ} 4470$
ØMAI= 1297 1/k > 716.92 1/k OKI
The TA THE
BM DEDTH: 21.8" + 10" +1.8" + "= 4'-1.6" 2 24-6" ALLOWABLE OK

Ram Printout 2.1 – System 3 Open Web Steel Joist – Joist

Standard Joist Selection

RAM Steel v10.0 DataBase: Thesis - Parkridge VI Building Code: IBC

10/27/06 12:12:31

Floor Ty	pe: 2nd - J	oists	Beam Number = 276					
SPAN IN Max Joist Tota	NFORMAT imum Deptl Size (Optir l Beam Len	TON (ft): 1 n Limitation num) gth (ft)	I-End (66 specified = =	5.00,0.00) = 26.00 in 24LH11 37.17	J-End (66.00,37.17)			
LINE L	OADS (k/ft):						
Load	Dist	DL	LL	Red%	Туре			
1	0.000	0.100	0.500	0.0%	Red			
	37.166	0.100	0.500					
2	0.000	0.000	0.000		NonR			
	37.166	0.000	0.000					
Max	imum Total	Unif. Load	at any loc	cation (lbs/fi	c): 600.0			
Allo	wable Stres	s Ratio: 1.00)					
_		Design Loa	ds	Allowable	Loads (lbs/ft)			

	100518	SILLOUGS	1 1110 **	uble Louds (03/10/
Dead:		100.0			
Live:		500.0			511.6
Total:		600.0			767.4
MOMENTS:					
Span	Cond	Momer	nt	(a)	
		kip-:	ft	ft	
Center	Max +	103.	6	18.6	
REACTION	S (kips):				
			Left	Right	
DL reacti	on		1.86	1.86	
Max +LL	reaction		9.29	9.29	
Max +tot	al reaction		11.15	11.15	
DEFLECTIO	DNS:				
Dead load	d (in)	=	0.242	L/D =	1842
Live load	(in)	=	1.211	L/D =	368
Total load	d (in)	=	1.453	L/D =	307

Ram Printout 2.2 – System 3 Open Web Steel Joist – Girder

Gravity Beam Design

RAM INTERNATIONAL	RAM Steel DataBase: 7 Building Co	v10.0 Fhesis - Pa ode: IBC	rkridge V	I		•	_	Ste	10/ eel Cod	/27/06 12:12:31 le: AISC LRFD
Floor Typ	e: 2nd - Jo	ists	Beam I	Number =	306					
SPAN INF Beam Total I Mp (ki	F ORMATI Size (Optin Beam Leng ip-ft) =	ON (ft): num) th (ft) 397.50	I-End (56 = =	5 .00,37.17) W21X44 25.00	J-End	(81.00,3	37.17)	Fy = 5	0.0 ksi	
POINT LO	OADS (kip	s):					_			
Dist 5.000 5.000 10.000 15.000 15.000 20.000 20.000 LINE LO2 Load 1	DL 1.75 1.86 1.75 1.86 1.75 1.86 1.75 1.86 1.75 1.86 ADS (k/ft): Dist 0.000 25.000	RedLL 8.75 9.29 8.75 9.29 8.75 9.29 8.75 9.29 8.75 9.29 DL 0.044 0.044	Red% 35.5 35.5 35.5 35.5 35.5 35.5 35.5 35.	NonRLL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Red%	StorLL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Red% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	RoofLL 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Red% Snow Snow Snow Snow Snow Snow		
SHEAR (U	Ultimate):	Max Vu ((1.2DL+1.	6LL) = 46	.55 kips	0.90Vn	= 195.62 l	kips		
MOMENT	ГS (Ultima	te):								
Span Center Controlling	Cond Max +	Loa 1.2D 1.2D	dCombo DL+1.6LL DL+1.6LL	Mu kip-f 348.3 348.3	u (it 3 12 3 12	@ ft .5 .5	Lb ft 5.0 1 5.0 1	Cb .00 .00	Phi 0.90 0.90	Phi*Mn kip-ft 349.69 349.69
REACTIO	DNS (kips):	:								
DL reaction Max +LL reaction Max +total reaction (factored)			Left 7.77 23.27 46.55	Right 7.77 23.27 46.55						
DEFLECT Dead l Live lo Net To	FIONS: load (in) oad (in) otal load (in	l)	at at at	12.50 f 12.50 f 12.50 f	t = t = t =	-0.267 -0.809 -1.076	L/ L/ L/	D = D = D =	1124 371 279	

Ram Printout 2.4 – System 4 Non-Composite – Beam

Gravity Beam Design

Gravity Beam Design									
RAM INTERNATIONAL	RAM Steel DataBase: 7 Building Co	v10.0 Thesis - Pa ode: IBC	arkridge VI	[10/ Steel Cod	27/06 12:12:31 le: AISC LRFD
Floor Type: 2nd Beam Number = 107									
SPAN INFORMATION (ft): Beam Size (Optimum) Total Beam Length (ft) Mp (kip-ft) = 445.83		I-End (64.33,0.00) = W21X48 = 37.17		J-End (64.33,37.17)		Fy =	= 50.0 ksi		
LINE LO	ADS (k/ft):								
Load 1	Dist 0.000	DL 0.167	LL 0.834	Red% 14.7%	Type Ree	e 1			
2	37.166 0.000 37.166	0.167 0.048 0.048	0.834 0.000 0.000		NonF	ł			
SHEAR (Ultimate):	Max Vu	(1.2DL+1.	6LL) = 25.9)2 kips	0.90Vn = 19	94.67 kips		
MOMEN	TS (Ultima	te):		,			I		
Span	Cond	Loa	dCombo	Mu kip-ft	(a f) Lb t ft	Cb	Phi	Phi*Mn kip-ft
Center Controllin	Max +	1.2I 1.2I	DL+1.6LL DL+1.6LL	240.8 240.8	18.0 18.0	5 0.0 5 0.0	$\begin{array}{c} 1.00 \\ 1.00 \end{array}$	0.90 0.90	398.35 398.35
REACTI	ONS (kips):								
DL reaction Max +LL reaction Max +total reaction (factored)			Left 3.99 13.21 25.92	Right 3.99 13.21 25.92					
DEFLEC	TIONS:								
Dead	load (in)		at	18.58 ft	=	-0.331	L/D =	1346	
Live I Net T	oad (in) otal load (in)	at at	18.58 ft 18.58 ft	=	-1.097 -1.429	L/D = L/D =	407 312	

Ram Printout 2.5 – System 4 Non-Composite – Girder

Gravity Beam Design										
RAM INTERNATIONAL	RAM Steel DataBase: T Building Co	v10.0 Thesis - Pa ode: IBC	arkridge V	I				S	10/ teel Coc	/27/06 12:12:31 le: AISC LRFD
Floor Typ	e: 2nd		Beam Nu	mber = 28	3					
SPAN INFORMATION (ft): I-End Beam Size (Optimum) Total Beam Length (ft) Mp (kip-ft) = 445.83				5.00,37.17) J-End (81.00,37.17) W21X48 Fy = 50.0 ksi 25.00						
POINT L	OADS (kips	s):								
Dist	DL	RedLL	Red%	NonRLL	StorLL	Red%	RoofLL	. Red%	þ	
8.330	3.69	14.59	31.8 21.8	0.00	0.00	0.0	0.00	Snow	1	
8.550 16.670	3.99	13.49	31.8	0.00	0.00	0.0	0.00	S_{now}	1	
16.670	3.99	15.49	31.8	0.00	0.00	0.0	0.00	Snow	/	
LINE LO	ADS (k/ft):									
Load	Dist	DL	LL	Red%	Ту	pe				
1	0.000	0.048	0.000		Noi	'nR				
	25.000	0.048	0.000							
SHEAR (Ultimate):	Max Vu ((1.2DL+1.	6LL) = 42	.78 kips	0.90Vn	= 194.67	kips		
MOMEN	ГS (Ultimat	te):								
Span	Cond	Loa	dCombo	M	u	a	Lb	Cb	Phi	Phi*Mn
~				kip-f	ft	ft	ft			kip-ft
Center Controllin	Max +	1.21	DL+1.6LL	354.	8 12 9 14	2.5	8.3	1.00	0.90	369.23
Controlling	g	1.21	JL+1.0LL	354.	ð 12	2.5	8.3	1.00	0.90	309.23
REACTIO	ONS (kips):			Left	Right					
DL reaction			8.28	8.28						
Max +LL reaction			20.53	20.53						
Max +total reaction (factored)				42.78	42.78					
DEFLEC	FIONS:									
Dead load (in)		at	12.50 1	ft =	-0.280		/D =	1072		
Live le	oad (in)	`	at	12.501	nt = 0 -	-0.707		D = D	424	
net I	51a1 10ad (1n)	at	12.501	u =	-0.987	L	/D =	304	